MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania - Local Contests
Laurențiu Panaitopol, Tulcea
2010 Laurențiu Panaitopol, Tulcea
4
Sum of cosines of differences
Sum of cosines of differences
Source:
October 28, 2019
Trigonometric inequality
inequalities
trigonometry
Problem Statement
Let be a natural number
n
,
n,
n
,
and
n
n
n
real numbers
a
1
,
a
2
,
…
,
a
n
.
a_1,a_2,\ldots ,a_n .
a
1
,
a
2
,
…
,
a
n
.
Then,
∑
1
≤
i
<
j
≤
n
cos
(
a
i
−
a
j
)
≥
−
n
/
2.
\sum_{1\le i<j\le n} \cos\left( a_i-a_j \right)\ge -n/2.
1
≤
i
<
j
≤
n
∑
cos
(
a
i
−
a
j
)
≥
−
n
/2.
Back to Problems
View on AoPS