MathDB
Infinite Equilateral Triangles

Source:

February 1, 2009
geometryperimeter

Problem Statement

An equilateral triangle is drawn with a side of length a a. A new equilateral triangle is formed by joining the midpoints of the sides of the first one. Then a third equilateral triangle is formed by joining the midpoints of the sides of the second; and so on forever. The limit of the sum of the perimeters of all the triangles thus drawn is: <spanclass=latexbold>(A)</span> Infinite<spanclass=latexbold>(B)</span> 514a<spanclass=latexbold>(C)</span> 2a<spanclass=latexbold>(D)</span> 6a<spanclass=latexbold>(E)</span> 412a <span class='latex-bold'>(A)</span>\ \text{Infinite} \qquad<span class='latex-bold'>(B)</span>\ 5\frac {1}{4}a \qquad<span class='latex-bold'>(C)</span>\ 2a \qquad<span class='latex-bold'>(D)</span>\ 6a \qquad<span class='latex-bold'>(E)</span>\ 4\frac {1}{2}a