MathDB
Geometric Singapore Equality

Source: IMO ShortList 1988, Problem 23, Singapore 2, Problem 69 of ILL

November 9, 2005
geometrycircumcircletrigonometryincenteranalytic geometryIMO Shortlist

Problem Statement

Let Q Q be the centre of the inscribed circle of a triangle ABC. ABC. Prove that for any point P, P, a(PA)^2 \plus{} b(PB)^2 \plus{} c(PC)^2 \equal{} a(QA)^2 \plus{} b(QB)^2 \plus{} c(QC)^2 \plus{} (a \plus{} b \plus{} c)(QP)^2, where a \equal{} BC, b \equal{} CA and c \equal{} AB.