MathDB
Functional Equation on Z

Source: Pan African Maths Olympiad

August 11, 2005
functioninduction

Problem Statement

Let f:ZZf: \mathbb{Z} \rightarrow \mathbb{Z} be a function such that: For all aa and bb in Z{0}\mathbb{Z} - \{0\}, f(ab)f(a)+f(b)f(ab) \geq f(a) + f(b). Show that for all aZ{0}a \in \mathbb{Z} - \{0\} we have f(an)=nf(a)f(a^n) = nf(a) for all nNn \in \mathbb{N} if and only if f(a2)=2f(a)f(a^2) = 2f(a)