MathDB
Find all triples such that a quadratic bound implies a constant function

Source: 2019 Philippine IMO TST2 Problem 3

May 4, 2022
quadraticsalgebrainequalitiesFunctional inequalityfunctionabsolute valueconstant

Problem Statement

Determine all ordered triples (a,b,c)(a, b, c) of real numbers such that whenever a function f:RRf : \mathbb{R} \to \mathbb{R} satisfies f(x)f(y)a(xy)2+b(xy)+c|f(x) - f(y)| \le a(x - y)^2 + b(x - y) + c for all real numbers xx and yy, then ff must be a constant function.