MathDB
Romania 2

Source: IMO LongList 1959-1966 Problem 17

September 1, 2004
geometryparallelogramvectorLocus problemsLocusIMO LonglistIMO Shortlist

Problem Statement

Let ABCDABCD and ABCDA^{\prime }B^{\prime}C^{\prime }D^{\prime } be two arbitrary parallelograms in the space, and let M,M, N,N, P,P, QQ be points dividing the segments AA,AA^{\prime }, BB,BB^{\prime }, CC,CC^{\prime }, DDDD^{\prime } in equal ratios. a.) Prove that the quadrilateral MNPQMNPQ is a parallelogram. b.) What is the locus of the center of the parallelogram MNPQ,MNPQ, when the point MM moves on the segment AAAA^{\prime } ? (Consecutive vertices of the parallelograms are labelled in alphabetical order.