MathDB
Teams in Card Game

Source: AIME 2010II Problem 13

April 1, 2010
probabilityquadraticsnumber theoryrelatively primeAMC

Problem Statement

The 52 52 cards in a deck are numbered 1,2,,52 1, 2, \ldots, 52. Alex, Blair, Corey, and Dylan each picks a card from the deck without replacement and with each card being equally likely to be picked, The two persons with lower numbered cards from a team, and the two persons with higher numbered cards form another team. Let p(a) p(a) be the probability that Alex and Dylan are on the same team, given that Alex picks one of the cards a a and a\plus{}9, and Dylan picks the other of these two cards. The minimum value of p(a) p(a) for which p(a)12 p(a)\ge\frac12 can be written as mn \frac{m}{n}. where m m and n n are relatively prime positive integers. Find m\plus{}n.