MathDB
Inequality with numbers with sum 1

Source: 2019 Brazil Ibero TST P3

June 14, 2023
inequalitiesalgebraSymmetric inequality

Problem Statement

Let n2n \geq 2 be an integer and x1,x2,,xnx_1, x_2, \ldots, x_n be positive real numbers such that i=1nxi=1\sum_{i=1}^nx_i=1. Show that (i=1n11xi)(1i<jnxixj)n2.\bigg(\sum_{i=1}^n\frac{1}{1-x_i}\bigg)\bigg(\sum_{1 \leq i < j \leq n}x_ix_j\bigg) \leq \frac{n}{2}.