MathDB
Points with equal angles

Source: 2015 USAJMO problem 5

April 29, 2015
USA(J)MOUSAJMOgeometrycyclic quadrilateral2015 USAJMOsimilar trianglestrigonometry

Problem Statement

Let ABCDABCD be a cyclic quadrilateral. Prove that there exists a point XX on segment BD\overline{BD} such that BAC=XAD\angle BAC=\angle XAD and BCA=XCD\angle BCA=\angle XCD if and only if there exists a point YY on segment AC\overline{AC} such that CBD=YBA\angle CBD=\angle YBA and CDB=YDA\angle CDB=\angle YDA.