MathDB
Product of injective/surjective functions

Source: Romanian TST 2001

January 16, 2011
functionpigeonhole principlenumber theoryprime numbersalgebra proposedcombinatorics

Problem Statement

a) Let f,g:ZZf,g:\mathbb{Z}\rightarrow\mathbb{Z} be one to one maps. Show that the function h:ZZh:\mathbb{Z}\rightarrow\mathbb{Z} defined by h(x)=f(x)g(x)h(x)=f(x)g(x), for all xZx\in\mathbb{Z}, cannot be a surjective function.
b) Let f:ZZf:\mathbb{Z}\rightarrow\mathbb{Z} be a surjective function. Show that there exist surjective functions g,h:ZZg,h:\mathbb{Z}\rightarrow\mathbb{Z} such that f(x)=g(x)h(x)f(x)=g(x)h(x), for all xZx\in\mathbb{Z}.