MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
JBMO TST - Moldova
2012 Junior Balkan Team Selection Tests - Moldova
1
minimum of a*b*c+d*e*f+g*h*k
minimum of a*b*c+d*e*f+g*h*k
Source:
March 5, 2012
inequalities
inequalities unsolved
Problem Statement
Let
1
≤
a
,
b
,
c
,
d
,
e
,
f
,
g
,
h
,
k
≤
9
1\leq a,b,c,d,e,f,g,h,k \leq 9
1
≤
a
,
b
,
c
,
d
,
e
,
f
,
g
,
h
,
k
≤
9
and
a
,
b
,
c
,
d
,
e
,
f
,
g
,
h
,
k
a,b,c,d,e,f,g,h,k
a
,
b
,
c
,
d
,
e
,
f
,
g
,
h
,
k
are different integers, find the minimum value of the expression
E
=
a
∗
b
∗
c
+
d
∗
e
∗
f
+
g
∗
h
∗
k
E = a*b*c+d*e*f+g*h*k
E
=
a
∗
b
∗
c
+
d
∗
e
∗
f
+
g
∗
h
∗
k
and prove that it is minimum.
Back to Problems
View on AoPS