MathDB
2014 Fall Team #7

Source:

March 26, 2022
algebra

Problem Statement

Let P(x)=k=1n(x3k+x3k1),Q(x)=k=1n(x3k+x3k+1).P(x) = \sum^n_{k=1}(x^{3^k}+ x^{-3^k}- 1), Q(x) = \sum^n_{k=1}(x^{3^k}+ x^{-3^k}+ 1). Given that P(x)Q(x)=k=23n23nakxk,P(x)Q(x) =\sum^{2\cdot 3^n}_{k=-2\cdot 3^n} a_kx^k, Compute k=03nak\sum^{3^n}_{k=0}a_k in terms of nn.