MathDB
2022 Team P11

Source:

February 28, 2022
team

Problem Statement

Let {εi}i1,{θi}i0\{\varepsilon_i\}_{i\ge 1}, \{\theta_i\}_{i\ge 0} be two infinite sequences of real numbers, such that εi{1,1}\varepsilon_i \in \{-1,1\} for all ii, and the numbers θi\theta_i obeytanθn+1=tanθn+εnsec(θn)tanθn1,n1\tan \theta_{n+1} = \tan \theta_{n}+\varepsilon_n \sec(\theta_{n})-\tan \theta_{n-1} , \qquad n \ge 1and θ0=π4,θ1=2π3\theta_0 = \frac{\pi}{4}, \theta_1 = \frac{2\pi}{3}. Compute the sum of all possible values of limm(n=1m1tanθn+1+tanθn1+tanθmtanθm+1)\lim_{m \to \infty} \left(\sum_{n=1}^m \frac{1}{\tan \theta_{n+1} + \tan \theta_{n-1}} + \tan \theta_m - \tan \theta_{m+1}\right)
Proposed by Grant Yu