MathDB
Metric space

Source: IMS 2014 - Day1 - Problem4

October 2, 2014
functionlimittopologyreal analysisreal analysis unsolved

Problem Statement

Let (X,d)(X,d) be a metric space and f:XXf:X \to X be a function such that x,yX:d(f(x),f(y))=d(x,y)\forall x,y\in X : d(f(x),f(y))=d(x,y). a)\text{a}) Prove that for all xXx \in X, limn+d(x,fn(x))n\lim_{n \rightarrow +\infty} \frac{d(x,f^n(x))}{n} exists, where fn(x)f^n(x) is f(f(f(x)ntimes))\underbrace{f(f(\cdots f(x)}_{n \text{times}} \cdots )). b)\text{b}) Prove that the amount of the limit does not depend on choosing xx.