MathDB
inequality for polynomial in Z[x]

Source: 2001 Moldova MO Grade 11 P4

April 13, 2021
inequalitiesalgebrapolynomial

Problem Statement

Let P(x)=xn+a1xn1++anP(x)=x^n+a_1x^{n-1}+\ldots+a_n (n2n\ge2) be a polynomial with integer coefficients having nn real roots b1,,bnb_1,\ldots,b_n. Prove that for x0max{b1,,bn}x_0\ge\max\{b_1,\ldots,b_n\}, P(x0+1)(1x0b1++1x0bn)2n2.P(x_0+1)\left(\frac1{x_0-b_1}+\ldots+\frac1{x_0-b_n}\right)\ge2n^2.