MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova National Olympiad
2001 Moldova National Olympiad
Problem 4
inequality for polynomial in Z[x]
inequality for polynomial in Z[x]
Source: 2001 Moldova MO Grade 11 P4
April 13, 2021
inequalities
algebra
polynomial
Problem Statement
Let
P
(
x
)
=
x
n
+
a
1
x
n
−
1
+
…
+
a
n
P(x)=x^n+a_1x^{n-1}+\ldots+a_n
P
(
x
)
=
x
n
+
a
1
x
n
−
1
+
…
+
a
n
(
n
≥
2
n\ge2
n
≥
2
) be a polynomial with integer coefficients having
n
n
n
real roots
b
1
,
…
,
b
n
b_1,\ldots,b_n
b
1
,
…
,
b
n
. Prove that for
x
0
≥
max
{
b
1
,
…
,
b
n
}
x_0\ge\max\{b_1,\ldots,b_n\}
x
0
≥
max
{
b
1
,
…
,
b
n
}
,
P
(
x
0
+
1
)
(
1
x
0
−
b
1
+
…
+
1
x
0
−
b
n
)
≥
2
n
2
.
P(x_0+1)\left(\frac1{x_0-b_1}+\ldots+\frac1{x_0-b_n}\right)\ge2n^2.
P
(
x
0
+
1
)
(
x
0
−
b
1
1
+
…
+
x
0
−
b
n
1
)
≥
2
n
2
.
Back to Problems
View on AoPS