MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2009 District Olympiad
3
Romania District Olympiad 2009 - Grade XI
Romania District Olympiad 2009 - Grade XI
Source:
April 10, 2011
limit
induction
real analysis
real analysis unsolved
Problem Statement
Let
(
x
n
)
n
≥
1
(x_n)_{n\ge 1}
(
x
n
)
n
≥
1
a sequence defined by
x
1
=
2
,
x
n
+
1
=
x
n
+
1
n
,
(
∀
)
n
∈
N
∗
x_1=2,\ x_{n+1}=\sqrt{x_n+\frac{1}{n}},\ (\forall)n\in \mathbb{N}^*
x
1
=
2
,
x
n
+
1
=
x
n
+
n
1
,
(
∀
)
n
∈
N
∗
. Prove that
lim
n
→
∞
x
n
=
1
\lim_{n\to \infty} x_n=1
lim
n
→
∞
x
n
=
1
and evaluate
lim
n
→
∞
x
n
n
\lim_{n\to \infty} x_n^n
lim
n
→
∞
x
n
n
.
Back to Problems
View on AoPS