MathDB
Miklos Schweitzer 1975_7

Source: Theory of Functions

December 30, 2008
functioncalculusderivativeanalytic geometrygraphing linesslopereal analysis

Problem Statement

Let a<a<b<b a<a'<b<b' be real numbers and let the real function f f be continuous on the interval [a,b] [a,b'] and differentiable in its interior. Prove that there exist c(a,b),c(a,b) c \in (a,b), c'\in (a',b') such that f(b)\minus{}f(a)\equal{}f'(c)(b\minus{}a), f(b')\minus{}f(a')\equal{}f'(c')(b'\minus{}a'), and c<c c<c'. B. Szokefalvi Nagy