MathDB
Cauchy with powers

Source: Austrian-Polish 2005, Problem 6

July 5, 2015
functional equationalgebraCauchy functional equationSum of powers

Problem Statement

Determine all monotone functions f:ZZf: \mathbb{Z} \rightarrow \mathbb{Z}, so that for all x,yZx, y \in \mathbb{Z} f(x2005+y2005)=(f(x))2005+(f(y))2005f(x^{2005} + y^{2005}) = (f(x))^{2005} + (f(y))^{2005}