MathDB
Find the minimum

Source: BdMO 2023 Secondary National P5

February 12, 2023
algebraManipulationidentity

Problem Statement

Let mm, nn and pp are real numbers such that (m+n+p)(1m+1n+1p)=1\left(m+n+p\right)\left(\frac 1m + \frac 1n + \frac1p\right) =1. Find all possible values of 1(m+n+p)20231m20231n20231p2023.\frac 1{(m+n+p)^{2023}} -\frac 1{m^{2023}} -\frac 1{n^{2023}} -\frac 1{p^{2023}}.