MathDB
finite set

Source: USAMO 1994

October 23, 2005
inductionfunctionalgebra unsolvedalgebra

Problem Statement

Let U,σ(U)\, |U|, \, \sigma(U) \, and π(U)\, \pi(U) \, denote the number of elements, the sum, and the product, respectively, of a finite set U\, U \, of positive integers. (If U\, U \, is the empty set, U=0,σ(U)=0,π(U)=1\, |U| = 0, \, \sigma(U) = 0, \, \pi(U) = 1.) Let S\, S \, be a finite set of positive integers. As usual, let (nk)\, \binom{n}{k} \, denote n!k!(nk)!\, n! \over k! \, (n-k)!. Prove that US(1)U(mσ(U)S)=π(S) \sum_{U \subseteq S} (-1)^{|U|} \binom{m - \sigma(U)}{|S|} = \pi(S) for all integers mσ(S)\, m \geq \sigma(S).