Let ∣U∣,σ(U) and π(U) denote the number of elements, the sum, and the product, respectively, of a finite set U of positive integers. (If U is the empty set, ∣U∣=0,σ(U)=0,π(U)=1.) Let S be a finite set of positive integers. As usual, let (kn) denote k!(n−k)!n!. Prove that U⊆S∑(−1)∣U∣(∣S∣m−σ(U))=π(S) for all integers m≥σ(S).