MathDB
\sqrt{a^2_j-a^2_k < \frac{1}{\sqrt{n} +\sqrt{n - 1}}

Source: 2014 Saudi Arabia Pre-TST 1.1

September 13, 2020
algebrainequalities

Problem Statement

Let a1,a2,...,a2na_1, a_2,...,a_{2n} be positive real numbers such that ai+an+i=1a_i + a_{n+i} = 1, for all i=1,...,ni = 1,...,n. Prove that there exist two different integers 1j,k2n1 \le j, k \le 2n for which aj2ak2<1n+n1\sqrt{a^2_j-a^2_k} < \frac{1}{\sqrt{n} +\sqrt{n - 1}}