MathDB
Pairwise distance-one products

Source: IMO 2019 SL A4

September 22, 2020
algebraIMO ShortlistIMO Shortlist 2019

Problem Statement

Let n2n\geqslant 2 be a positive integer and a1,a2,,ana_1,a_2, \ldots ,a_n be real numbers such that a1+a2++an=0.a_1+a_2+\dots+a_n=0. Define the set AA by A={(i,j)1i<jn,aiaj1}A=\left\{(i, j)\,|\,1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\} Prove that, if AA is not empty, then (i,j)Aaiaj<0.\sum_{(i, j) \in A} a_{i} a_{j}<0.