MathDB
Reciprocal of odd double factorial series

Source:

October 31, 2019
factorialseriesDefinite integralreal analysisintegral sequence

Problem Statement

Consider the sequence (In)n1, \left( I_n \right)_{n\ge 1} , where In=0π/4esinxcosx(cosxsinx)2n(cosx+sinx)dx, I_n=\int_0^{\pi/4} e^{\sin x\cos x} (\cos x-\sin x)^{2n} (\cos x+\sin x )dx, for any natural number n. n.
a) Find a relation between any two consecutive terms of In. I_n.
b) Calculate limnnIn. \lim_{n\to\infty } nI_n.
c) Show that i=11(2i1)!!=0π/4esinxcosx(cosx+sinx)dx. \sum_{i=1}^{\infty }\frac{1}{(2i-1)!!} =\int_0^{\pi/4} e^{\sin x\cos x} (\cos x+\sin x )dx.
Cătălin Țigăeru