MathDB
IMC 2016, Problem 10

Source: IMC 2016

July 28, 2016
IMCIMC 2016college contestsmatrix

Problem Statement

Let AA be a n×nn\times n complex matrix whose eigenvalues have absolute value at most 11. Prove that Annln2An1. \|A^n\|\le \dfrac{n}{\ln 2} \|A\|^{n-1}. (Here B=supx1Bx\|B\|=\sup\limits_{\|x\|\leq 1} \|Bx\| for every n×nn\times n matrix BB and x=i=1nxi2\|x\|=\sqrt{\sum\limits_{i=1}^n |x_i|^2} for every complex vector xCnx\in\mathbb{C}^n.)
(Proposed by Ian Morris and Fedor Petrov, St. Petersburg State University)