MathDB
MAA not use bugs or frogs in a combo problem challenge (impossible)

Source: 12B #17

November 17, 2021
AMCAMC 12AMC 12 B

Problem Statement

A bug starts at a vertex of a grid made of equilateral triangles of side length 11. At each step the bug moves in one of the 66 possible directions along the grid lines randomly and independently with equal probability. What is the probability that after 55 moves the bug never will have been more than 11 unit away from the starting position?
<spanclass=latexbold>(A)</span> 13108<spanclass=latexbold>(B)</span> 754<spanclass=latexbold>(C)</span> 29216<spanclass=latexbold>(D)</span> 427<spanclass=latexbold>(E)</span> 116<span class='latex-bold'>(A)</span>\ \frac{13}{108} \qquad<span class='latex-bold'>(B)</span>\ \frac{7}{54} \qquad<span class='latex-bold'>(C)</span>\ \frac{29}{216} \qquad<span class='latex-bold'>(D)</span>\ \frac{4}{27} \qquad<span class='latex-bold'>(E)</span>\ \frac{1}{16}