MathDB
Trisected rectangle

Source:

February 3, 2016
AMCAMC 10AMC 10 Ageometryrectangle

Problem Statement

In rectangle ABCDABCD, AB=6AB=6 and BC=3BC=3. Point EE between BB and CC, and point FF between EE and CC are such that BE=EF=FCBE=EF=FC. Segments AE\overline{AE} and AF\overline{AF} intersect BD\overline{BD} at PP and QQ, respectively. The ratio BP:PQ:QDBP:PQ:QD can be written as r:s:tr:s:t, where the greatest common factor of r,sr,s and tt is 11. What is r+s+tr+s+t?
<spanclass=latexbold>(A)</span>7<spanclass=latexbold>(B)</span>9<spanclass=latexbold>(C)</span>12<spanclass=latexbold>(D)</span>15<spanclass=latexbold>(E)</span>20<span class='latex-bold'>(A) </span> 7 \qquad <span class='latex-bold'>(B) </span> 9 \qquad <span class='latex-bold'>(C) </span> 12 \qquad <span class='latex-bold'>(D) </span> 15 \qquad <span class='latex-bold'>(E) </span> 20