MathDB
Common Tangent

Source:

March 27, 2008
geometrysimilar triangles

Problem Statement

Let C1 C_1 and C2 C_2 be circles defined by (x \minus{} 10)^2 \plus{} y^2 \equal{} 36and (x \plus{} 15)^2 \plus{} y^2 \equal{} 81,respectively. What is the length of the shortest line segment PQ \overline{PQ} that is tangent to C1 C_1 at P P and to C2 C_2 at Q Q? <spanclass=latexbold>(A)</span> 15<spanclass=latexbold>(B)</span> 18<spanclass=latexbold>(C)</span> 20<spanclass=latexbold>(D)</span> 21<spanclass=latexbold>(E)</span> 24 <span class='latex-bold'>(A)</span>\ 15 \qquad <span class='latex-bold'>(B)</span>\ 18 \qquad <span class='latex-bold'>(C)</span>\ 20 \qquad <span class='latex-bold'>(D)</span>\ 21 \qquad <span class='latex-bold'>(E)</span>\ 24