MathDB
x_1^2+3x_2^2+5x_3^2+\cdots+(2\cdot2023-1)\cdot x^2_{2023}

Source: Moldova TST 2023

April 8, 2023
algebra

Problem Statement

Show that if 20232023 real numbers x1,x2,,x2023x_1,x_2,\dots,x_{2023} satisfy x1x2x20230,x_1\geq x_2\geq\dots\geq x_{2023}\geq0, then x12+3x22+5x32++(220231)x20232(x1+x2++x2023)2.x_1^2+3x_2^2+5x_3^2+\cdots+(2\cdot2023-1)\cdot x^2_{2023}\leq(x_1+x_2+\cdots+x_{2023})^2. When does the equality take place?