MathDB
International Zhautykov Olympiad 2011 - Problem 2

Source:

January 16, 2011
functionalgebrafunctional equationalgebra unsolved

Problem Statement

Find all functions f:RRf:\mathbb{R}\rightarrow\mathbb{R} which satisfy the equality, f(x+f(y))=f(xf(y))+4xf(y)f(x+f(y))=f(x-f(y))+4xf(y) for any x,yRx,y\in\mathbb{R}.