MathDB
2018 PUMaC Algebra A8

Source:

November 25, 2018
algebra

Problem Statement

pq=n=112n+6(104cos2(πn24))(1(1)n)3cos(πn24)(1+(1)n)2516cos2(πn24)\frac{p}{q} = \sum_{n = 1}^\infty \frac{1}{2^{n + 6}} \frac{(10 - 4\cos^2(\frac{\pi n}{24})) (1 - (-1)^n) - 3\cos(\frac{\pi n}{24}) (1 + (-1)^n)}{25 - 16\cos^2(\frac{\pi n}{24})} where pp and qq are relatively prime positive integers. Find p+qp + q.