MathDB
Trigonometric limit

Source: Moldavian MO 2006

March 19, 2006
limittrigonometryalgebra proposedalgebra

Problem Statement

Let nNn\in\mathbb{N}^*. Prove that limx0(1+x2)n+1k=1ncoskxxk=1nsinkx=2n2+n+126n. \lim_{x\to 0}\frac{ \displaystyle (1+x^2)^{n+1}-\prod_{k=1}^n\cos kx}{ \displaystyle x\sum_{k=1}^n\sin kx}=\frac{2n^2+n+12}{6n}.