MathDB
Median/Angle Bisector Triangle

Source:

March 21, 2008
geometryarea of a triangleHeron's formulaangle bisector

Problem Statement

In triangle ABC ABC, AB \equal{} 13, BC \equal{} 14, and AC \equal{} 15. Let D D denote the midpoint of BC \overline{BC} and let E E denote the intersection of BC \overline{BC} with the bisector of angle BAC BAC. Which of the following is closest to the area of the triangle ADE ADE? <spanclass=latexbold>(A)</span> 2<spanclass=latexbold>(B)</span> 2.5<spanclass=latexbold>(C)</span> 3<spanclass=latexbold>(D)</span> 3.5<spanclass=latexbold>(E)</span> 4 <span class='latex-bold'>(A)</span>\ 2 \qquad <span class='latex-bold'>(B)</span>\ 2.5 \qquad <span class='latex-bold'>(C)</span>\ 3 \qquad <span class='latex-bold'>(D)</span>\ 3.5 \qquad <span class='latex-bold'>(E)</span>\ 4