MathDB
sum a/{1 + 2b^3} >= (a^2 + b^2 + c^2 + d^2}/3 if a,b,c,d>=0, a+b+c+d = 3

Source: 2017 Romania JBMO TST 2.4

June 27, 2020
inequalitiesalgebra

Problem Statement

Let a,b,c,da, b, c, d be non-negative real numbers satisfying a+b+c+d=3a + b + c + d = 3. Prove that a1+2b3+b1+2c3+c1+2d3+d1+2a3a2+b2+c2+d23\frac{a}{1 + 2b^3} + \frac{b}{1 + 2c^3} +\frac{c}{1 + 2d^3} +\frac{d}{1 + 2a^3} \ge \frac{a^2 + b^2 + c^2 + d^2}{3} When does the equality hold?