MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Chisinau City MO
1979 Chisinau City MO
175
Chisinau MO p175 1979 IX 1/a + 1/b + 1/c >= 9 id a+b+c=1
Chisinau MO p175 1979 IX 1/a + 1/b + 1/c >= 9 id a+b+c=1
Source:
March 17, 2021
algebra
inequalities
Problem Statement
Prove that if the sum of positive numbers
a
,
b
,
c
a, b, c
a
,
b
,
c
is equal to
1
1
1
, then
1
a
+
1
b
+
1
c
≥
9.
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \ge 9.
a
1
+
b
1
+
c
1
≥
9.
Back to Problems
View on AoPS