MathDB
eigenvalue inequality

Source: miklos schweitzer 2005 q6

August 31, 2021
linear algebramatrixinequalities

Problem Statement

SU2(C)={(zwwˉzˉ):z,wC,zzˉ+wwˉ=1}SU_2(\mathbb{C})=\left\{\begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix} : z,w\in\mathbb{C} , z\bar{z}+w\bar{w}=1\right\} A and B are 2 elements of the above matrix group and have eigenvalues eiθ1e^{i\theta_1} , eiθ1e^{-i\theta_1} and eiθ2e^{i\theta_2} , eiθ2e^{-i\theta_2}respectively, where 0θiπ0\leq\theta_i\leq\pi . Prove that if AB has eigenvalue eiθ3e^{i\theta_3} , then θ3\theta_3 satisfies the inequality θ1θ2θ3min{θ1+θ2,2π(θ1+θ2)}|\theta_1-\theta_2|\leq\theta_3\leq \min\{\theta_1+\theta_2 , 2\pi-(\theta_1+\theta_2)\}