MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Soros Olympiad in Mathematics
VI Soros Olympiad 1999 - 2000 (Russia)
10.9
sin x + sin (m x) >= 1.8 - VI Soros Olympiad 1999-00 Round 1 10.9
sin x + sin (m x) >= 1.8 - VI Soros Olympiad 1999-00 Round 1 10.9
Source:
May 21, 2024
algebra
trigonometry
inequalities
Problem Statement
Prove that for any
λ
>
3
\lambda > 3
λ
>
3
there is a number
x
x
x
for which
sin
x
+
sin
(
λ
x
)
≥
1.8.
\sin x + \sin (\lambda x) \ge 1.8.
sin
x
+
sin
(
λ
x
)
≥
1.8.
Back to Problems
View on AoPS