MathDB
St.Peterburg, P7 Grade 9, 2013

Source:

April 27, 2014
modular arithmeticnumber theory proposednumber theory

Problem Statement

Given is a natural number aa with 5454 digits, each digit equal to 00 or 11. Prove the remainder of aa when divide by 333439 33\cdot 34\cdots 39 is larger than 100000100000. (It's mean: ar(mod333439)a \equiv r \pmod{33\cdot 34\cdots 39 } with 0<r<333439 0<r<33\cdot 34\cdots 39 then prove that r>100000r>100000 ) M. Antipov