MathDB
Two integers

Source: APMO 2000

April 1, 2006
inequalitiesinductionfunctionprobability

Problem Statement

Let n,kn,k be given positive integers with n>kn>k. Prove that: 1n+1nnkk(nk)nk<n!k!(nk)!<nnkk(nk)nk \frac{1}{n+1} \cdot \frac{n^n}{k^k (n-k)^{n-k}} < \frac{n!}{k! (n-k)!} < \frac{n^n}{k^k(n-k)^{n-k}}