MathDB
Plunecke's Inequality

Source: IMC 2012, Day 2, Problem 5

July 29, 2012
inequalitiesabstract algebrainductiongroup theoryIMCcollege contests

Problem Statement

Let c1c \ge 1 be a real number. Let GG be an Abelian group and let AGA \subset G be a finite set satisfying A+AcA|A+A| \le c|A|, where X+Y:={x+yxX,yY}X+Y:= \{x+y| x \in X, y \in Y\} and Z|Z| denotes the cardinality of ZZ. Prove that A+A++AkckA|\underbrace{A+A+\dots+A}_k| \le c^k |A| for every positive integer kk.
Proposed by Przemyslaw Mazur, Jagiellonian University.