MathDB
Spring 2020 Team Round Problem 24

Source:

August 22, 2020

Problem Statement

Let aa, bb, and cc be real angles such that \newline 3sina+4sinb+5sinc=03\sin a + 4\sin b + 5\sin c = 0 3cosa+4cosb+5cosc=0.3\cos a + 4\cos b + 5\cos c = 0. \newline The maximum value of the expression sinbsincsin2a\frac{\sin b \sin c}{\sin^2 a} can be expressed as pq\frac{p}{q} for relatively prime p,qp,q. Compute p+qp+q.