MathDB
Today's calculation of Integral 784

Source: 2012 Tokyo University of Science entrance exam/Architecture

February 9, 2012
calculusintegrationfunctionlogarithmsanalytic geometrygeometrylimit

Problem Statement

Define for positive integer nn, a function fn(x)=lnxxn (x>0).f_n(x)=\frac{\ln x}{x^n}\ (x>0). In the coordinate plane, denote by SnS_n the area of the figure enclosed by y=fn(x) (xt)y=f_n(x)\ (x\leq t), the xx-axis and the line x=tx=t and denote by TnT_n the area of the rectagle with four vertices (1, 0), (t, 0), (t, fn(t))(1,\ 0),\ (t,\ 0),\ (t,\ f_n(t)) and (1, fn(t))(1,\ f_n(t)).
(1) Find the local maximum fn(x)f_n(x).
(2) When tt moves in the range of t>1t>1, find the value of tt for which Tn(t)Sn(t)T_n(t)-S_n(t) is maximized.
(3) Find S1(t)S_1(t) and Sn(t) (n2)S_n(t)\ (n\geq 2).
(4) For each n2n\geq 2, prove that there exists the only t>1t>1 such that Tn(t)=Sn(t)T_n(t)=S_n(t).
Note that you may use limxlnxx=0.\lim_{x\to\infty} \frac{\ln x}{x}=0.