MathDB
Problems
Contests
National and Regional Contests
Finland Contests
Finnish National High School Mathematics Competition
2012 Finnish National High School Mathematics Competition
2
Given two equal quantities, show they are both x+y+z
Given two equal quantities, show they are both x+y+z
Source: Finland 2012, Problem 2
May 5, 2013
algebra unsolved
algebra
system of equations
Problem Statement
Let
x
≠
1
,
y
≠
1
x\ne 1,y\ne 1
x
=
1
,
y
=
1
and
x
≠
y
.
x\ne y.
x
=
y
.
Show that if
y
z
−
x
2
1
−
x
=
z
x
−
y
2
1
−
y
,
\frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y},
1
−
x
yz
−
x
2
=
1
−
y
z
x
−
y
2
,
then
y
z
−
x
2
1
−
x
=
z
x
−
y
2
1
−
y
=
x
+
y
+
z
.
\frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y}=x+y+z.
1
−
x
yz
−
x
2
=
1
−
y
z
x
−
y
2
=
x
+
y
+
z
.
Back to Problems
View on AoPS