MathDB
Prove this 5 variable inequality

Source: 2019 Jozsef Wildt International Math Competition

May 20, 2020
inequalities

Problem Statement

Let aa, bb, cc, dd, ee be real strictly positive real numbers such that abcde=1abcde = 1. Then is true the following inequality:dea(b+1)+eab(c+1)+abc(d+1)+bcd(e+1)+cde(a+1)52\frac{de}{a(b+1)}+\frac{ea}{b(c+1)}+\frac{ab}{c(d+1)}+\frac{bc}{d(e+1)}+\frac{cd}{e(a+1)}\geq \frac{5}{2}