MathDB
Easy Inequality - Iran NMO 2003 (Second Round) - Problem4

Source:

October 4, 2010
inequalitiesinequalities proposed

Problem Statement

Let x,y,zRx,y,z\in\mathbb{R} and xyz=1xyz=-1. Prove that: x4+y4+z4+3(x+y+z)x2y+x2z+y2x+y2z+z2x+z2y. x^4+y^4+z^4+3(x+y+z)\geq\frac{x^2}{y}+\frac{x^2}{z}+\frac{y^2}{x}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{z^2}{y}.