For a fixed natural number m≥2, prove that
a.) There exists integers x1,x2,…,x2m such that xixm+i=xi+1xm+i−1+1,i=1,2,…,m(∗)
b.) For any set of integers {x1,x2,…,x2m which fulfils (*), an integral sequence …,y−k,…,y−1,y0,y1,…,yk,… can be constructed such that ykym+k=yk+1ym+k−1+1,k=0,±1,±2,… such that yi=xi,i=1,2,…,2m.