MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
MMATHS problems
2016 MMATHS
3
2016 MMATHS Tiebreaker p3 - \sqrt[3]{x^5 + y^5 + z^5 + t^5} = 2016
2016 MMATHS Tiebreaker p3 - \sqrt[3]{x^5 + y^5 + z^5 + t^5} = 2016
Source:
October 8, 2023
number theory
MMATHS
Problem Statement
Show that there are no integers
x
,
y
,
z
x, y, z
x
,
y
,
z
, and
t
t
t
such that
x
5
+
y
5
+
z
5
+
t
5
3
=
2016.
\sqrt[3]{x^5 + y^5 + z^5 + t^5} = 2016.
3
x
5
+
y
5
+
z
5
+
t
5
ā
=
2016.
Back to Problems
View on AoPS