MathDB
Miklós Schweitzer 1961- Problem 1

Source:

November 22, 2015
college contests

Problem Statement

1. Let aa ( e\neq e, the unit element) be an element of finite order of a group GG and let tt (2\geq 2) be a positive integer. Show: if the complex A={e,a,a2,,at1}A= \{ e,a,a^2, \dots , a^{t-1} \} is not a group, then for every positive integer kk( 2kt2 \leq k \leq t) the complex B={e.ak,a2k,,a(t1)k}B= \{ e. a^k, a^{2k}, \dots , a^{(t-1)k} \} differs from AA. (A. 16)