MathDB
f(x)=x-xe^(-1/x)

Source: ISI (BS) 2006 #6

June 2, 2012
functionlimitcalculuscalculus computations

Problem Statement

(a) Let f(x)=xxe1x,  x>0f(x)=x-xe^{-\frac1x}, \ \ x>0. Show that f(x)f(x) is an increasing function on (0,)(0,\infty), and limxf(x)=1\lim_{x\to\infty} f(x)=1.
(b) Using part (a) or otherwise, draw graphs of y=x1,y=x,y=x+1y=x-1, y=x, y=x+1, and y=xe1xy=xe^{-\frac{1}{|x|}} for <x<-\infty<x<\infty using the same XX and YY axes.