MathDB
A bound on a Ratio of Areas

Source:

October 21, 2010
ratiogeometrycyclic quadrilateralgeometry unsolved

Problem Statement

Let γ,Γ\gamma,\Gamma be two concentric circles with radii r,Rr,R with r<Rr<R. Let ABCDABCD be a cyclic quadrilateral inscribed in γ\gamma. If AB\overrightarrow{AB} denotes the Ray starting from AA and extending indefinitely in BsB's direction then Let AB,BC,CD,DA\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD} , \overrightarrow{DA} meet Γ\Gamma at the points C1,D1,A1,B1C_1,D_1,A_1,B_1 respectively. Prove that [A1B1C1D1][ABCD]R2r2\frac{[A_1B_1C_1D_1]}{[ABCD]} \ge \frac{R^2}{r^2} where [.][.] denotes area.