MathDB
8-digit number with only two are same

Source: 0

April 28, 2009

Problem Statement

How many 8-digit numbers are there such that exactly 7 digits are all different?
<spanclass=latexbold>(A)</span> (93)26!3<spanclass=latexbold>(B)</span> (83)27!<spanclass=latexbold>(C)</span> (83)27!3<spanclass=latexbold>(D)</span> (73)27!<spanclass=latexbold>(E)</span> (94)26!8<span class='latex-bold'>(A)</span>\ {{9}\choose{3}}^2 \cdot 6! \cdot 3 \qquad<span class='latex-bold'>(B)</span>\ {{8}\choose{3}}^2 \cdot 7! \qquad<span class='latex-bold'>(C)</span>\ {{8}\choose{3}}^2 \cdot 7! \cdot 3 \\ \qquad<span class='latex-bold'>(D)</span>\ {{7}\choose{3}}^2 \cdot 7! \qquad<span class='latex-bold'>(E)</span>\ {{9}\choose{4}}^2 \cdot 6! \cdot 8